
Approved for public release; distribution unlimited.

Representing Object Models as
Theories

Proceedings of the 10th Knowledge-Based Software Engineering
Conference
Boston Massachusetts, November 12-15, 1995

Scott DeLoach, Paul Bailor, and Thomas Hartrum

Department of Electrical & Computer Engineering
Air Force Institute of Technology

2950 P Street, Wright-Patterson AFB, OH 45433-7765



Representing Object Models as Theories

Scott DeLoach, Paul Bailor, and Thomas Hartrum

Department of Electrical and Computer Engineering

Air Force Institute of Technology

Wright-Patterson AFB, Ohio 45433

Abstract
Although techniques for using formal speci�cations

have been progressing, methods for developing for-
mal speci�cations themselves have improved little. To
alleviate this problem, we propose a parallel re�ne-
ment approach to speci�cation acquisition where the
designer uses an object-oriented speci�cation represen-
tation while an underlying speci�cation composition
system manipulates an equivalent theory-based speci-
�cation. This paper presents the key to such a sys-
tem { a theory-based object model. Our theory-based
object model formally de�nes object-oriented concepts
in terms of algebraic theories and category theory op-
erations. The theory-based object model provides the
basis for the translation of the speci�cation from a
semi-formal, object-oriented representation to a for-
mal theory-based speci�cation suitable for input to
semi-automated software synthesis systems.

1 Introduction
Use of algebraic theories to represent software engi-

neering knowledge has gained momentum during the
last decade. Some of the most promising work is us-
ing theory-based speci�cations to drive software syn-
thesis systems. A notable example of such a synthesis
system, the Kestrel Interactive Development System
(KIDS) [1], has yielded some exciting results. KIDS
has been used to derive dozens of algorithms including
a transportation scheduling algorithm for over 15,000
movements that was 78 percent faster and had 75 per-
cent fewer delays than the best previously known algo-
rithms [2]. A follow-on e�ort to KIDS, Specware [3],
supports a systematic approach to the composition of
theory-based speci�cations followed by their stepwise
re�nement into code. The basic synthesis steps are
to 1) develop a domain theory for the problem to be
solved, 2) create a speci�cation describing the prob-
lem in the language of its domain theory, 3) apply
speci�cation re�nements to construct a program-based
model of the problem speci�cation, 4) apply program
optimizations, and 5) compile the program [1].

While systems such as KIDS and Specware have
been making progress in software synthesis research
(steps 3 and 4 above), research in the acquisition of
formal speci�cations (steps 1 and 2) has not been keep-
ing pace. Formal speci�cation of software remains an
intricate, manually intensive activity. Problems asso-
ciated with speci�cation acquisition include a lack of
expertise in mathematical and logical concepts among

software developers, an inability to e�ectively commu-
nicate formal speci�cations with end users, and the
tendency of formal notations to restrict solution cre-
ativity [4]. Fraser et. al., suggest an approach to over-
coming these problems via parallel re�nement of semi-
formal and formal speci�cations. In a parallel re�ne-
ment approach, designers develop speci�cations using
both semi-formal and formal representations, succes-
sively re�ning both representations in parallel [4].

This paper presents a theory-basedmodel of object-
oriented concepts, our initial research into developing
a parallel re�nement methodology based on object-
orientation and theories. Our approach is to de-
velop speci�cations using a graphically-based, object-
oriented paradigm while an underlying system auto-
matically translates the object-oriented representation
into a theory-based speci�cation. In the system, a user
might develop an object-oriented speci�cation using a
knowledge-based \assistant" to help re�ne or restruc-
ture informal parts of the speci�cation to meet the
stringent requirements of our transformation system.

We start by looking at related work in Section 2.
Our view of object-oriented concepts is described in
Section 3, and our theory-based object model and
translation from object-oriented to theory-based mod-
els is discussed in Section 4. Future work is discussed
in Section 5 followed by conclusions in Section 6.

2 Related Work

There have been a number e�orts designed to in-
corporate object-oriented concepts into formal speci�-
cation languages. MooZ [5] and Object-Z [6] extend Z
by adding object-oriented structures while maintain-
ing its model-based semantics. Z++ [7] and OOZE
[8] also extend Z but provide semantics based on alge-
bra and category theory. Although these Z extensions
provide enhanced structuring techniques, they do not
provide improved speci�cation acquisition methods.
FOOPS [9] is an algebraic, object-oriented speci�ca-
tion language based on OBJ3 [10]. Both FOOPS and
OBJ3 focus on prototyping, and provide little sup-
port for speci�cation acquisition. Some research has
been directed toward improving speci�cation acquisi-
tion by translating object-oriented speci�cations into
formal speci�cations [11]; however, these techniques
are based on Z and lack a strong notion of re�nement
from speci�cation to code.



3 The Informal Object Model

Because a standard set of de�nitions does not
yet exist for many terms and concepts in object-
orientation, we selected a speci�c object-oriented
model before de�ning our theory-based object model.
We chose the Rumbaugh Object Modeling Technique
[12] for its breadth of coverage, availability of tools,
and usefulness for domain analysis. Rumbaugh uses
three distinct views to describe a system: (1) the ob-
ject model describes structural relationships between
system objects, (2) the dynamic model describes inter-
actions between system objects, and (3) the functional
model describes how the system transforms data.
Rumbaugh focuses on four major themes: classes, ob-
jects with state, relationships between classes, and
communication between objects.

An object class describes a group of objects with
similar properties, behavior, relationships to other ob-
jects, and semantics. Whereas classes describe ob-
jects, an object is the actual entity whose state is ma-
nipulated by class operations. An object class de�nes
an object's attributes and operations. Attributes are
data held by an object while operations are actions
that may be performed on an object. One of the basic
concepts distinguishing object-orientation from other
encapsulation techniques is that every object has a
state, and the e�ects of an object's operations are de-
pendent on its state.

There are three common relationships between
classes: inheritance, association, and aggregation. In-
heritance is the mechanism of obtaining attributes and
operations using a generalization-specialization struc-
ture. In general, a \subclass" inherits all the at-
tributes and operations of a parent class and may add
additional attributes and operations of its own. In the
generalization-specialization structure, each object of
a subclass is also an object of the superclass. Multi-
ple inheritance is the mechanism by which a class can
inherit features from more than one superclass.

An association is a group of links with a common
structure and semantics where a link is de�ned as a
physical or conceptual connection between object in-
stances. The relationship between associations and
links is similar to the relationship between classes and
objects. An association is a template that de�nes what
classes of objects may be connected as well as associ-
ation attributes. Association attributes are attributes
that do not belong to any one of the objects involved
in a link, but exist only when there is a link between
objects.

The �nal relationship, aggregation, is an important
concept in object-orientation. Aggregation is a rela-
tionship between two classes where one class repre-
sents the entire assembly and the other class is \part-
of" the assembly. Without aggregate objects, a system
formed by combining subsystems cannot be modeled.

To incorporate objects into non-trivial systems,
they must be able to communicate with each other. In
Rumbaugh's methodology, objects communicate via
events. An event is an instantaneous one-way trans-
mission of information from one object to another.

4 Objects as Theories
This section presents our theory-based object

model that formally de�nes object-oriented concepts
and is the basis for translating an object-oriented spec-
i�cation into a theory-based speci�cation. Concepts of
algebraic theories and category theory necessary to de-
�ne the object model are presented in Section 4.1. The
actual theory-based object model is de�ned in Section
4.2 followed by a discussion of the translation process
in Section 4.3.

4.1 Theory Fundamentals

Theory-based algebraic speci�cation is concerned
with (1) modeling system behavior using algebras (a
collection of values and operations on those values)
and axioms that characterize algebra behavior, and
(2) composition of larger speci�cations from smaller
speci�cations. Composition of speci�cations is accom-
plished via speci�cation building operations de�ned by
category theory constructs [13]. A theory is the set of
all assertions that can be logically proved from the
axioms of a given speci�cation. Thus, a speci�cation
de�nes a theory and is termed a theory presentation.

In algebraic speci�cations, the structure of a speci�-
cation is de�ned in terms of sorts, abstract collections
of values, and operations over those sorts. This struc-
ture is called a signature. A signature describes the
structure of a solution; however, a signature does not
specify semantics. To specify semantics, the de�nition
of a signature is extended with axioms de�ning the in-
tended semantics of signature operations. A signature
with associated axioms is called a speci�cation. An
example of a speci�cation is shown in Figure 1.

spec Array is

sorts E, I, A

operations

assign : A, I, E ! A

apply : A, I ! E

axioms 8 (i,j 2 I, a 2 A, e 2 E)

(i = j) ) apply(assign(a,i,e),j) = e;

(i 6= j) ) apply(assign(a,i,e),j) = apply(a,j)

end

Figure 1: Array speci�cation

A speci�cation allows us to formally de�ne the in-
ternal structure of object classes (attributes and oper-
ations); however, they do not provide the capability to
reason about relationships between object classes. To
create theory-based algebraic speci�cations that par-
allel object-oriented speci�cations, the ability to de�ne
and reason about relationships between theories, simi-
lar to those used in object-oriented approaches (inher-
itance, aggregation, etc.), must be available. Category
theory is an abstract mathematical theory used to de-
scribe the external structure of various mathematical
systems [14] and is used here to describe relationships
between speci�cations.



spec Finite-Map is

sorts M, D, R

operations

empty : ! M

update : M, D, R ! M

apply : A, D ! R

def? : A, D ! Boolean

axioms 8 (d1,d2 2 D, m 2 M, r 2 R)

(d1 = d2) ) apply(update(m,d2,r),d1) = r;

(d1 6= d2) ) apply(assign(m,d2,r),d1) = apply(m,d1);

def?(update(m,d2,r),d1) = (d1 = d2) _ def?(m,d1);

def?(empty,d1) = false

end

Figure 2: Finite map speci�cation

A category consists of a collection of C-objects and
C-arrows between objects such that (1) there is a C-
arrow from each object to itself, (2) C-arrows are com-
posable, and (3) arrow composition is associative. The
most common example is the category Set where \C-
objects" are sets \C-arrows" are functions between
sets. Speci�cations with the correct \C-arrows" (spec-
i�cation morphisms) form the category Spec which is
of great interest in our research. A speci�cation mor-
phism, �, is a pair of functions that map sorts (�S)
and operations (�
) from one speci�cation to compat-
ible sorts and operations of a second speci�cation such
that the axioms of the �rst speci�cation are theorems
of the second speci�cation. Intuitively, speci�cation
morphisms de�ne how one speci�cation is embedded
in another. An example of a morphism from array to
�nite-map (Figure 2) is shown below.

�
 = fassign 7! update, apply 7! applyg
�S = fA 7! M, I 7! D, E 7! Rg

Speci�cation morphisms comprise the basic tool for
de�ning and re�ning speci�cations. Our toolset can
be extended to allow the creation of new speci�ca-
tions from a set of existing speci�cations. Often two
speci�cations derived from a common ancestor speci-
�cation need to be combined. The desired combina-
tion consists of the unique parts of two speci�cations
and some \shared part" common to both speci�cations
(the part de�ned in the shared ancestor speci�cation).
This combining operation is a colimit.

Conceptually, the colimit is the \shared union" of a
set of speci�cations based on the morphisms between
the speci�cations. These morphisms de�ne equiva-
lence classes of sorts and operations. For example,
if a morphism, �, from speci�cation A to speci�ca-
tion B maps sort � to sort �, then � and � are in
the same equivalence class and thus become a single
sort in the colimit speci�cation of A, B, and �. The
colimit operation creates a new speci�cation, the col-
imit speci�cation, and a speci�cation morphism from
each speci�cation to the colimit speci�cation. An ex-

ample showing the relationship between a colimit and
multiple inheritance is provided in Section 4.2.

From these basic tools (morphisms and colimits),
we can construct speci�cations in a number of ways
[13]. We can (1) build a speci�cation from a signa-
ture and a set of axioms, (2) form the union of a
set of speci�cations via a colimit, (3) rename sorts
or operations via a speci�cation morphism, and (4)
parameterize speci�cations. Many of these methods
are useful in translating object-oriented speci�cations
into theory-based speci�cations. Detailed semantics of
object-oriented concepts using speci�cations and cat-
egory theory constructs are presented next.

4.2 A Formal Object Model
Object Class. We start the description of our

theory-based object model by de�ning the basic build-
ing block of object-orientation { an object class. An
object class is de�ned to be a theory presentation rep-
resenting seven components: a class sort, additional
sorts referenced in the theory, attributes, states, state
attributes, methods, and events. The class sort is a
special sort in the theory while the attributes, states,
state attributes, methods, and events are all opera-
tions in the theory.

De�nition 4.1 Object Class - A class, C, is a
signature, � =< S;
 > and a set of axioms, �, over
� (i.e., a theory presentation, or speci�cation) where

S = a set of sorts including the class sort

 = a set of operations over S representing

attributes, states, state attributes,
methods, and events

� = a set of axioms over �

An object class may have many instances, each of
which represents a unique object in the class. Each
value in the class sort is a reference to a particular ob-
ject in the class. Objects themselves are not explicitly
represented in a class de�nition or speci�cation. They,
and their attribute values, are maintained external to
the class de�nition.

Attributes are functions that return the value of
data held by an object. State attributes di�er from
normal attributes. State attributes return data about
an object's state where each state is de�ned as a
unique constant. Attributes return data about an
object; they do not modify it in any way. Meth-
ods are de�ned as functions that may modify an ob-
ject's normal attributes. Events and attributes de�ne
the class interface. There are two types of events:
incoming and outgoing. Incoming events are func-
tions that may modify an object's state attributes
and cause a method to be invoked. Outgoing events
are operations that map to incoming events in other
classes and are discussed in more detail in the sec-
tion Object Communication. Each class also has a
new event and create method used to create valid ob-
jects of the class. Figure 3 shows an example of a
theory-based representation of an object class. The
operations date and bal are attributes, acct-state
is a state attribute, create-acct, credit and debit



class Acct is
import Amnt, Date
class-sort Acct
sorts Acct-State
operations

attr-equal : Acct, Acct ! Boolean
attributes

date : Acct ! Date
bal : Acct! Amnt

state-attributes
acct-state : Acct! Acct-State

methods
create-acct : Date ! Acct
credit : Acct, Amnt ! Acct
debit : Acct, Amnt ! Acct

states
ok : ! Acct-State
overdrawn : ! Acct-State

events
new-acct : Date ! Acct
deposit : Acct, Amnt ! Acct
withdrawal : Acct, Amnt ! Acct

axioms 8 (d 2 Date, a, a1 2 Acct, x 2 Amnt)
% state uniqueness axioms
ok 6= overdrawn;

% operation de�nitions
attr-equal(a, a1) ) date(a) = date(a1) ^ bal(a) = bal(a1);
date(create-acct(d)) = d ;
bal(create-acct(d)) = 0 ;
acct-state(new-acct(d)) = ok ^ attr-equal(new-acct(d), create-acct(d));

% method de�nitions
bal(credit(a,x)) = bal(a) + x ;
bal(debit(a,x)) = bal(a) - x ;

% deposit event de�nition
acct-state(a) = ok ) acct-state(deposit(a,x)) = ok ^ attr-equal(deposit(a,x), credit(a,x));
acct-state(a) = overdrawn ^ bal(a) + x � 0 ) acct-state(deposit(a,x)) = ok

^ attr-equal(deposit(a,x), credit(a,x));
acct-state(a) = overdrawn ^ bal(a) + x < 0 ) acct-state(deposit(a,x)) = overdrawn

^ attr-equal(deposit(a,x), credit(a,x));
% withdrawal event de�nition
acct-state(a) = ok ^ bal(a) � x ) acct-state(withdrawal(a,x)) = ok

^ attr-equal(withdrawal(a,x), debit(a,x));
acct-state(a) = ok ^ bal(a) < x ) acct-state(withdrawal(a,x)) = overdrawn

^ attr-equal(withdrawal(a,x), debit(a,x));
acct-state(a) = overdrawn ) acct-state(withdrawal(a,x)) = overdrawn

^ attr-equal(withdrawal(a,x), a)
end-class

Figure 3: Object class axioms



are methods, ok and overdrawn are possible states of
acct-state, and new-acct, deposit and withdrawal
are incoming events.

The axioms of a class are used to de�ne the seman-
tics of operations. In general, axioms are de�ned by
describing the e�ect of methods on attributes or the
e�ect of events on state attributes. In the ACCT class,
the balance of the account after invoking the credit
method is de�ned by the axiom bal(credit(a, x))
= bal(a) + x; however, the invocation of the credit
method is controlled by the value of the acct-state
attribute and reception of a deposit event as de�ned
in Figure 3.
Inheritance. Class inheritance plays an important

role in object-orientation; however, the correct use of
inheritance is not uniformly agreed upon. Many lan-
guages provide \ad-hoc" inheritance that allows a sub-
class to rede�ne or even remove attributes or methods
inherited from its superclass. However, most authors
see the necessity to restrict the amount of modi�ca-
tion freedom in a subclass. Our model implements
a generalization-specialization inheritance relationship
that requires that the subclass only extend the features
of its superclass. Liskov de�nes this desired e�ect as
the \substitution property" where a subclass object
can be freely substituted for a superclass object in
any environment designed for the superclass object
[15]. The subsort operator < de�nes a subset rela-
tionship among sorts such that for two sorts, A and
B, A < B ) A � B.

De�nition 4.2 Inheritance - A class, D, is said to
inherit from a class, C, if there exists a speci�cation
morphism from C to D such that the class sort of D
is a subsort of the class sort of C.

This de�nition basically states that all sorts and op-
erations (attributes, methods, and events) from class
C are embedded in class D and that a new sort, the
class sort of D, is de�ned as a subsort of the class
sort of C. The speci�cation morphism ensures that
the \substitution property" holds. Figure 4 shows the
speci�cation for a savings account class that inherits
directly from the ACCT. The import statement includes
all the sorts, operations, and axioms declared in the
ACCT class directly into SAcct while the class sort dec-
laration SAcct < Acct states that SAcct is a subclass
of Acct, and as such, all operations and axioms that
apply to an Acct object apply to a SAcct object.
Multiple Inheritance. Multiple inheritance re-

quires a slight modi�cation to our notion of inheri-
tance. The set of superclasses must �rst be combined
and then used to \inherit from".

De�nition 4.3 Multiple Inheritance - A class D
multiply inherits from a collection of classes, (C1::Cn)
if there exists a speci�cation morphism from the col-
imit of (C1 .. Cn) to D such that the class sort of D
is a subsort of each of the class sorts of (C1 .. Cn).

The colimit operation allows us to combine any
number of classes, along shared parts, to create a sin-
gle speci�cation with all the sorts, operations, and

class SAcct is
import ACCT, Rate
class-sort SAcct < Acct
operations

attr-equal : SAcct, SAcct! Boolean
attributes

rate : SAcct ! Rate
int-date : SAcct! Date

methods
create-sacct : Date ! SAcct
set-rate : SAcct, Date, Rate ! SAcct
comp-int : SAcct, Date ! SAcct

events
new-sacct : Date ! SAcct
rate-change : SAcct, Date, Rate ! SAcct
compute-interest : SAcct, Date ! SAcct

axioms 8 (d 2 Date, r 2 Rate, a, a1 2 SAcct)
... axioms omitted ...

end-class

Figure 4: Savings class

axioms of the original classes. We can then extend
the colimit speci�cation with the de�nition of the new
class sort. Thus to create an account that combines
the features of a savings account with those of a check-
ing account (which inherits from the ACCT class sim-
ilar to SACCT), we take the colimit of classes ACCT,
SACCT, CACCT, and morphisms from ACCT to SACCT and
CACCT as shown in Figure 5 (an arrow labeled with an
\i" represents an import morphism and a \c" repre-
sents a morphism formed by the colimit operation).
A simple extension of the colimit speci�cation with
the class sort de�nition, Comb-Acct < SAcct, CAcct,
yields the desired combined class where Comb-Acct is
a subclass of both SAcct and CAcct.

SAcct CAcct

Acct

Comb-Acct

c

c

c

 i  i 

Figure 5: Colimit of accounts

Object-Valued Attributes. Because associa-
tion, aggregation, and object communication require
objects to be aware of other objects in the system,
there must be some mechanism for objects to refer
to each other. This mechanism is provided by object-
valued attributes which are attributes that return ref-
erences to other objects [9]. The sort of the value re-
turned by an object-valued attribute is the class sort
of the referenced object. Actually, an object-valued
attribute returns a reference to an object, not the ob-
ject itself. The use of references enables a system to



have multiple object-valued attributes that reference
the same object while maintaining only a single object.
Associations. In our model, we have chosen to

model associations very generically, as sets of individ-
ual links.

De�nition 4.4 Association An association is de-
�ned as a tuple A =< �; � >, where � is an object
class whose class sort is a set of the class sort of �,
and � is a class with two (or more) object-valued at-
tributes.

An association between the ACCT class and an un-
speci�ed CUST class is shown in Figure 6. The CA-LINK
class plays the role of � and has two object-valued at-
tributes, customer and account, and a method to cre-
ate new instances of the association. The CUST-ACCT
class de�nes a set of CA-Link objects while the sorts
Accts and Custs are sets of Acct and Cust objects.
The axioms in CUST-ACCT de�ne the multiplicity re-
lationships between accounts and customers. In this
case, there is exactly one customer per account while
each customer may have one or more accounts. As-
sociations with more than two classes are handled in
a similar manner by simply adding additional object-
valued attributes.
Aggregation. Although the object-valued at-

tributes in CA-Link are named cust and acct, they
have not been uni�ed with the CUST and ACCT class
sorts. Uni�cation of these sorts requires a higher-level
entity that describes how classes and associations in-
teract. In our model, this higher-level entity is an
aggregate class. An aggregate class has sub-objects
(or components) and associations between them that
implement the behavior of the aggregate. Once again,
object-valued attributes are used to describe this re-
lationship between objects.

De�nition 4.5 Aggregate - A class C is an aggre-
gate of a collection of component classes, (D1::Dn), if
there exists a speci�cation morphism from the colimit
of (D1::Dn) to C such that C has at least one corre-
sponding object-valued attribute referencing each class
in (D1::Dn).

Therefore, an aggregate class allows us to combine a
number of classes together via the colimit operation to
specify system or sub-system level functionality. The
colimit operation also gives us the capability to unify
sorts and operations de�ned in separate classes and
associations.

To create a system-level aggregate class, the col-
imit of all the object classes and associations within
the system is taken. In the previous CUST-ACCT ex-
ample, CUST, ACCT, and CUST-ACCT can be combined
together into a system with the Cust sort from CUST
and CUST-ACCT, and the Acct sort from ACCT and
CUST-ACCT, being uni�ed via morphisms that de�ne
their equivalence. In the colimit speci�cation the
CUST-ACCT association actually relates the CUST class
to the ACCT class. New operations and axioms can
be added to an extension of colimit speci�cation that
describe system-level interfaces and system behavior
based on the operations and axioms in its components.

link CA-Link is
class-sort CA-Link
sorts Cust, Acct
operations

attr-equal : CA-Link, CA-Link ! Boolean
attributes

customer : CA-Link ! Cust
account : CA-Link ! Acct

methods
create-ca-link : Cust, Acct ! CA-Link

events
new-ca-link : Cust, Acct! CA-Link

axioms 8 (c 2 Cust, a 2 Acct, cl,cl1 2 CA-Link)
attr-equal(cl, cl1) ) customer(cl) = customer(cl1)

^ account(cl) = account(cl1);
customer(create-ca-link(c, a)) = c;
account(create-ca-link(c, a)) = a;
attr-equal(new-ca-link(c,a), create-ca-link(c,a))

end-link

association Cust-Acct is
link-class CA-Link
import Accts, Custs % sets of Acct and Cust
class-sort Cust-Acct
methods

create-cust-acct : ! Cust-Acct
image : Cust-Acct, Cust ! Accts
image : Cust-Acct, Acct! Custs

events
new-cust-acct : ! Cust-Acct

axioms 8 (ca, ca1 2 Cust-Acct, c 2 Cust, a 2 Acct)
new-cust-acct() = create-cust-acct();
create-cust-acct() = empty-set;
size(image(ca, c)) � 1;
size(image(ca, a)) = 1;
... de�nition of image operations ...

end-association

Figure 6: Cust-Acct association

Object Communication. The model described
so far is su�cient to describe classes and their rela-
tionships; however, it does not address communica-
tion between objects. In our model, each object is
cognizant of the events that it generates. From an
object's perspective, events are sent to some anony-
mous object. An event is then de�ned as an operation
signature that maps to a method in some anonymous
object class. The anonymous class sort and operation
are de�ned in a separate communication theory. An
example of a communication theory is shown in Figure
7. Notice that the communication theory is actually
only a signature de�ning a class sort and an operation.

Each class that sends an event de�nes an object-
valued attribute and operation signature for that
event. A communication theory is then used to link
the sending class to the receiving class via morphisms
from the communication theory to the sending and
receiving classes unifying the communication theory
class sort and operation in the aggregate.



event Event-Name is
class-sort Event-Sort
events

event-name : Event-Sort ! Event-Sort
end-class

Figure 7: Communication theory

4.3 Translation
The focus of our research to date has been to show

that a graphically-based, object-oriented speci�cation
representation can be translated to and from a theory-
based representation. Table 1 shows how Rumbaugh
concepts map to theory-based concepts. There are
some components of Rumbaugh's model speci�ed in-
formally via notes or data dictionaries that will re-
quire extending Rumbaugh's notion with additional
formalisms. For example, if an object is required
to send an event to a given class, there is no Rum-
baugh notation for specifying which objects in the
class should actually receive the event. The event may
be sent to all objects in the class, objects with which
certain links exist, or to objects speci�ed by the sys-
tem. While our model can capture such information, a
direct translation from Rumbaugh's current notation
is impossible due to its informality.

We have found it necessary to restrict Rumbaugh's
notation in some cases. For instance, Rumbaugh al-
lows operation semantics to be speci�ed via tables,
equations, pseudocode, natural language, or axiomati-
cally. For obvious reasons, we require the operation se-
mantics to be speci�ed axiomatically. Also, in the dy-
namic model, Rumbaugh allows activities to be spec-
i�ed as occurring in a state or as actions occurring
on the transitions (i.e., a combined Mealy-Moore ma-
chine); however, to simplify the translation process,
we have restricted the dynamic model to a Mealy ma-
chine representation where all actions occur on tran-
sitions. This does not represent a semantic restriction
since the equivalence of Mealy and Moore machines is
well known [16].

5 Future Work
Figure 8 shows our concept of an object-oriented,

theory-based parallel re�nement speci�cation acquisi-
tion system. The system assists in the development
of theory-based domain models and system speci�-
cations. Although the designer is developing theory-
based models, the designer interacts with the system
via a conceptually simpler object-oriented represen-
tation. The critical component in the system is the
Translator, that maps theory-based speci�cations to
and from their object-oriented representations based
on the theory-based object model discussed in this pa-
per. The �rst step is to construct a domain model by
specifying domain object classes and their associations
graphically to de�ne the structure of the domain. The
object attributes and semantics are then speci�ed al-
gebraically or, preferably, graphically using behavior
representing structures such as state charts and data
ow diagrams that can be automatically translated

Table 1: Rumbaugh to object model translation

Rumbaugh Theory-based Model

classes theory presentation

attributes operation on class sort

operations operation on class sort

constraints axioms

object instances logical variables

simple inheritance morphism and subsort

multiple inheritance colimit and subsort

aggregation colimit and

object-valued-attributes

multiplicity axioms

associations container of link objects

link theory presentation

multiplicity axioms

quali�er attribute and axioms

link attributes operations

link operations operations

ordering sequence of link objects

constraints aggregate axioms

transition events operations

parameters operation parameters

actions operations and axioms

output events communication theories

state actions/activity see text

processes operations

operation de�nition axioms

data ow operations return values

control ow communication theories

data store object classes

into equivalent algebraic de�nitions. Once a domain
model is developed, it is re�ned and used to create
a system speci�cation which is fed into a correctness
preserving design (e.g., Specware) re�nement mecha-
nism that derives code satisfying the speci�cation.

In this paper, we presented a theory-based ob-
ject model that captures all the basic elements of an
object-oriented speci�cation. The next phase of our
research is to precisely de�ne the transformations nec-
essary to automatically translate a system speci�ed
using Rumbaugh's object modeling notation into the-
ories. This phase includes the de�nition of composi-
tion operations (based on category theory operations)
that transform object-oriented speci�cations into cor-
responding theories. It also includes development of
proof obligations necessary to show speci�cation cor-
rectness and consistency, as well as completeness of
the transformation process. An implementation of the
transformation composition operations is planned to
show the feasibility of theoretic results.

6 Conclusions
We have de�ned a theory-based object model that

has the power and exibility necessary to capture all



Domain Theory/
System Specification
Composition Mechanism

Object-
Oriented
User 
Interface

Translator

Design Refinement Mechanism

 Theory Library

Domain
Knowledge

Problem
Requirements

Figure 8: Parallel re�nement structure

the fundamental elements of an object-oriented spec-
i�cation. Use of category theory operations in con-
junction with algebraic speci�cations provides the ca-
pability to de�ne and reason about the internal se-
mantics of object classes as well as the structure and
relationships of those classes. Our theory-based ob-
ject model is the key to developing a parallel re�ne-
ment approach where system speci�cations are devel-
oped using an object-oriented representation while an
underlying speci�cation composition system manipu-
lates an equivalent theory-based speci�cation. These
theory-based system speci�cations may then be used
as input to a semi-automated transformation system
such as KIDS or Specware [1, 3] that produces code
correctly implementing the speci�cation.

Acknowledgments
This work has been supported by grants fromRome

Laboratory, the National Security Agency, and the Air
Force O�ce of Scienti�c Research.

References
[1] D. R. Smith, \KIDS - A Semi-automatic Pro-

gram Development System," IEEE Transactions
of Software Engineering, vol. 16, pp. 1024{1043,
September 1990.

[2] D. R. Smith, \Transformational Approach to
Transportation Scheduling," in Proceedings of the
8th Knowledge-Based Software Engineering Con-
ference, pp. 60{68, IEEE, October 1993.

[3] Kestrel Institute, Specware User Manual: Spec-
ware Version Core4, October 1994.

[4] M. D. Fraser, K. Kumar, and V. K. Vaishnavi,
\Strategies for Incorporating Formal Speci�ca-
tions," Communications of the ACM, vol. 37,
pp. 74{86, October 1994.

[5] K. Lano and H. Houghton, \Specifying a
Concept-recognition System in Z++," in Object-
Oriented Speci�cation Case Studies (K. Lano and
H. Houghton, eds.), pp. 137{157, Prentice-Hall,
1994.

[6] D. Carrington et al., \Object-Z: An Object-
Oriented Extension to Z," in Formal Description
Techniques, II: Proceedings of the IFIP Second
International Conference on Formal Description
Techniques for Distributed Systems and Commu-
nications Protocol, (Amsterdam), pp. 281{297,
North-Holland, December 1989.

[7] K. Lano and H. Houghton, \A Comparative De-
scription of Object-Oriented Speci�cation Lan-
guages," in Object-Oriented Speci�cation Case
Studies (K. Lano and H. Houghton, eds.), pp. 20{
54, Prentice-Hall, 1994.

[8] A. J. Alencar and J. A. Gougen, \Speci�cation in
OOZE with Examples," in Object-Oriented Speci-
�cation Case Studies (K. Lano and H. Houghton,
eds.), pp. 158{183, Prentice-Hall, 1994.

[9] J. A. Goguen and J. Meseguer, \Unifying Func-
tional, Object-Oriented and Relational Pro-
gramming with Logical Semantics," in Re-
search Directions in Object-Oriented Program-
ming (B. Shriver and P. Wegner, eds.), pp. 417{
477, MIT Press, 1987.

[10] J. A. Goguen and T. Winkler, \Introducing
OBJ3," tech. rep., Computer Science Laboratory
SRI International, 333 Ravenswood Ave, Menlo
Park, CA, August 1988.

[11] T. C. Hartrum and P. D. Bailor, \Teaching for-
mal extensions of informal-based object-oriented
analysis methodologies," in Software Engineering
Education Proceedings, (Pittsburgh, PA), Soft-
ware Engineering Education, SEI, Software En-
gineering Institute (SEI), Jan. 1994.

[12] J. Rumbaugh et al., Object-Oriented Modeling
and Design. Englewood Cli�s, New Jersey:
Prentice-Hall Inc., 1991.

[13] Y. V. Srinivas, \Algebraic Speci�cation: Syntax,
Semantics, Structure," tech. rep., Department of
Information and Computer Science, University
of California, Irvine, Department of Information
and Computer Science, University of California,
Irvine, June 1990. TR 90-15.

[14] Y. V. Srinivas, \Category Theory De�nitions and
Examples," tech. rep., Department of Informa-
tion and Computer Science, University of Califor-
nia, Irvine, Department of Information and Com-
puter Science, University of California, Irvine,
February 1990. TR 90-14.

[15] B. Liskov, \Data Abstraction and Hierarchy," in
(addendum to) Conference Proceedings, Object
Oriented Programming Systems Languages and
Applications (OOPSLA), 1987.

[16] J. E. Hopcroft and J. D. Ullman, Introduction to
Automata Theory, Languages, and Computation.
Reading, Massachusetts: Addison-Wesley, 1979.


